
Drawing and Analyzing Causal DAGs with DAGitty

Johannes Textor

July 18, 2023

DAGitty is a software for drawing and analyzing causal diagrams, also known as directed acyclic graphs
(DAGs). Functions include identification of minimal sufficient adjustment sets for estimating causal effects,
diagnosis of insufficient or invalid adjustment via the identification of biasing paths, identification of
instrumental variables, and derivation of testable implications.

DAGitty is provided in the hope that it is useful for researchers and students in Epidemiology, Sociology,
Psychology, and other empirical disciplines. The software should run in any modern web browser that
supports JavaScript, HTML, and SVG.

This is the user manual for DAGitty version 3.1. The manual is updated with every release of a new stable
version. DAGitty is available at dagitty.net. An R package ‘dagitty’ implementing the same functionality is
also available on CRAN and at github.com/jtextor/dagitty.

Contents

1 Introduction 1
1.1 Citing DAGitty 2
1.2 Running DAGitty online 2
1.3 Installing DAGitty on your own computer 2
1.4 Migrating from earlier versions of DAGitty 2

2 A brief introduction to causal diagrams 2

3 Loading, saving and sharing diagrams 4
3.1 DAGitty’s textual syntax for causal dia-

grams . 4
3.2 Loading a model text 5
3.3 Modifying the graphical layout of a diagram 6
3.4 Saving the diagram 6
3.5 Exporting the diagram 6
3.6 Publishing diagrams online 6

4 Editing diagrams using the graphical user inter-
face 7
4.1 Creating a new diagram 7
4.2 Adding new variables 7
4.3 Renaming variables 7
4.4 Setting the status of a variable 7
4.5 Adding new arrows 8
4.6 Deleting variables 8
4.7 Deleting arrows 8
4.8 Choosing the style of display 8

5 Analyzing diagrams 8
5.1 Paths . 8
5.2 Coloring 8
5.3 Effect analysis 8
5.4 View mode 9

5.4.1 The correlation graph 9
5.4.2 The moral graph 9

5.5 Causal effect identification 9
5.5.1 Adjustment sets 9
5.5.2 Instrumental variables 10

5.6 Testable implications 11

6 Acknowledgements 11

7 Legal notice 11

8 Bundled libraries 11

9 Bundled examples 12

10 Author contact 12

1 Introduction

DAGitty is a web-based software for analyzing causal
diagrams. It contains some of the fastest algorithms
available for this purpose.

This manual describes how causal diagrams can be
created (Section 3) and manipulated (Section 4) using
DAGitty. In Section 5, DAGitty’s capabilities to analyze

1

https://dagitty.net
https://github.com/jtextor/dagitty

causal diagrams are described. A brief introduction to
causal diagrams is given in Section 2. Advanced users
might also be interested in the R package ‘dagitty’ [19],
which implements all functionality of the web-based
software and more.

1.1 Citing DAGitty

Developing and maintaining DAGitty takes time and
effort. If you publish research results obtained with
the help of DAGitty, please consider giving us credit
by citing our work. The main reference for DAGitty
is our paper describing the accompanying R package
[19], which is based on the same software library, and
therefore also serves as a reference for the web-based pro-
gram. We have also published several research papers
describing the specific algorithms used in DAGitty, such
as for identification of biasing paths [18], adjustment
sets [21], and instrumental variables [22].

1.2 Running DAGitty online

There are two ways to run DAGitty: either from the
internet or from your own computer. To run DAGitty
online, visit the URL dagitty.net. DAGitty should run
in every modern browser. Specifically, I expect it to
work well on recent versions of Firefox, Chrome, Opera,
and Safari as well as on Internet Explorer (IE) version
9.0 or later, which all support scalable vector graphics
(SVG). If you encounter any problems, please send me
an e-mail so I can fix them (my contact information is
at the end of this manual). Keep in mind that DAGitty
is used by hundreds of people per day from all over
the world – these people all benefit if the problem you
found is fixed so please do consider investing the time
to notify me if you encounter any bugs.

1.3 Installing DAGitty on your own com-
puter

DAGitty can be “installed” on your computer for use
without an internet connection. To do this, download the
file dagitty.net/dagitty.zip which is a ZIP archive
containing DAGitty’s source. Unpack this ZIP file any-
where in your file system. To run DAGitty, just open
the file dags.html in the unpacked folder.

Some features of DAGitty will not work in the offline
version, because they are actually implemented on the
web server. Currently, these features are:

• Exporting model drawings as PDF, JPEG or PNG
files.

• Publishing models on-line.

1.4 Migrating from earlier versions of DAGitty

The following two issues are important for users of older
DAGitty versions. New users can skip this section.

• The model code syntax has been completely changed
in DAGitty version 3.0; the old syntax based on the
DAG program by Sven Knüppel [6] was getting
too limited to accommodate the new features that
were being added. Therefore, I decided to switch
to a very different, but much more extensible syn-
tax closely based on the “dot” language used by
graphviz. DAGitty will still be able to open model
code from older versions (with one small caveat for
very old code, see below) and will automatically
convert this to the new syntax.

• Early versions of DAGitty supported only one
exposure and one outcome variable. It has now
been possible for quite some time to have more
than one exposure and/or outcome variable. This
means that the old model code convention where
the variable in the first line is the exposure and
the variable in the second line is the outcome no
longer works. Hence, if you open a model created
with an earlier version in DAGitty 2.0 or higher,
exposure and outcome will appear like normal
variables. To fix this, simply set exposure and
outcome again and save the new model code.

2 A brief introduction to causal dia-

grams

In this section, we will briefly review what causal di-
agrams are and how they can be applied in empiri-
cal sciences. For a more detailed account, we recom-
mend the book Causal Inference in Statistics: A Primer
by Pearl, Glymour and Jewell [9], or the chapter Causal
Diagrams in the Epidemiology textbook of Rothman,
Greenland, and Lash [11]. Also take a look at the web
page dagitty.net/learn/, where I am collecting sev-
eral tutorials (some of them interactive) on specific DAG-
related topics.

In Epidemiology, causal diagrams are also frequently
called DAGs.1 In a nutshell, a DAG is a graphic model
that depicts a set of hypotheses about the causal process
that generates a set of variables of interest. An arrow

1The term “DAG” is somewhat confusing to computer scientists and
mathematicians, for whom a DAG is simply an abstract mathematical
structure without specific semantics attached to it.

2

https://dagitty.net
https://dagitty.net/dagitty.zip
https://dagitty.net/learn/

X → Y is drawn if there is a direct causal effect of X
on Y. Intuitively, this means that the natural process
determining Y is directly influenced by the status of X,
and that altering X via external intervention would also
alter Y. However, an arrow X→ Y only represents that
part of the causal effect which is not mediated by any of
the other variables in the diagram. If one is certain that
X does not have a direct causal influence on Y, then the
arrow is omitted. This has two important implications:
(1) arrows should follow time order, or else the diagram
contradicts the basic principle that causes must precede
their effects; (2) the omission of an arrow is a stronger
claim than the inclusion of an arrow – the presence of an
arrow depicts merely the “causal null hypothesis” that
X might have an effect on Y.

Mathematically, the semantics of an arrow X→ Y can
be defined as follows. Given a DAG G and a variable
Y in G, let X1, . . . ,Xn be all variables in G that have
direct arrows Xi → Y (also called the parents of Y).
Then G claims that the causal process determining the
value of Y can be modelled as a mathematical function
Y := f (X1, . . . ,Xn, ϵY), where ϵY (the “causal residual”)
is a random variable that is jointly independent of all Xi.

For example, the sentence “smoking causes lung
cancer” could be translated into the following simple
causal diagram:

smoking

lung cancer

We would interpret this diagram as follows: (1) The
variable “smoking” refers to a person’s smoking habit
prior to a later cancer disease status in that same person;
(2) the natural process by which a person develops
cancer might be influenced by the smoking habits of
that person; (3) there exist no other variables that have
a direct influence on both smoking habits and cancer.
A slightly more complex version of this diagram might
look as follows:

smoking

tar deposit in lungs

lung cancer

This diagram is about a person’s smoking habits at
a time t1, the tar deposit in her lungs at a later time t2,
and finally the development of lung cancer at an even
later time t3. We claim that (1) the natural process which
determines the amount of tar in the lungs is affected by

smoking; (2) the natural process by which lung cancer
develops is affected by the amount of tar in the lung; (3)
the natural process by which lung cancer develops is not
affected by the person’s smoking other than indirectly
via the tar deposit; and finally (4) no variables having
relevant direct influence on more than one variable of
the diagram were omitted.

In an epidemiological context, we are often interested
in the putative effect of a set of variables, called expo-
sures, on another set of variables called outcomes. A key
question in Epidemiology (and many other empirical
sciences) is: how can we infer the causal effect of an ex-
posure on an outcome of interest from an observational
study? Typically, a simple regression will not suffice
due to the presence of confounding factors, which may
lead to an over- or underestimation of the causal effect
from the observed data. If the assumptions encoded in
a given diagram hold, then it is sometimes possible to
devise an identification strategy from that diagram, by
which it would be possible to devise an unbiased esti-
mate of a causal effect from observed data. One example
identification strategy would be covariate adjustment. For
example, consider the following diagram:

smoking

carry matches cancer?

If we were to perform an association study on the
relationship between carrying matches in one’s pocket
and developing lung cancer, we would probably find a
correlation between these two variables. However, as
the above diagram indicates, this correlation would not
imply that carrying matches in your pocket causes lung
cancer: Smokers are more likely to carry matches in their
pockets, and also more likely to develop lung cancer.
This is an example of a confounded association between
two variables, which is mediated via the biasing path
(bold). Now let us assume (unrealistically, and solely for
didactic purposes) that the simplistic diagram above is
an accurate representation of the process that generated
our data. Under this assumption, would we adjust for
smoking, e.g. by weighted averaging of separate effect
estimates for smokers and non-smokers or by including
smoking status as a covariate in a regression model, we
would no longer find a correlation between carrying
matches and lung cancer. In other words, adjustment
for smoking would close the biasing path. In general, any
set of covariates that closes all biasing paths (and does
not open new ones or closes causal paths in the process)
is called an adjustment sets. Adjustment sets will be
explained in more detail in Section 5.5.1.

3

In DAGitty we can distinguish between observed
and unobserved (latent) variables. This distinction is
important when it comes to identifying causal effects:
if there are many unobserved variables in a DAG, then
this can make identification difficult or impossible. A
common situation is when one has so-called “latent
confounding factors” affecting two variables of interest;
often, one does not know all these confounding factors
and just represents this situation as follows:

U

coffee smoking

Since this situation is so common, there is an abbre-
viated notation for this using a bi-directed arrow:

coffee smoking

Importantly, this means that bi-directed edges do not
represent reciprocal causation (which is impossible to
represent in a DAG). A common use-case is to depict un-
known or unobserved confounders without specifying
explicitly what those confounders are.

The purpose of DAGitty is to aid study design
through devising identification strategies in (possibly
complex) causal diagrams and, more generally, through
the identification of causal and biasing paths as well as
testable implications in a given diagram.

3 Loading, saving and sharing dia-

grams

This section covers the three basic steps of working
with DAGitty: (1) loading a diagram; (2) manipulating
the graphical layout of the diagram; and (3) saving the
diagram. First of all, any causal diagram consists of ver-
tices (variables) and arrows (direct causal effects). You
can either create the diagram directly using DAGitty’s
graphical user interface (explained in the next section),
or prepare a textual diagram description in a word pro-
cessor and then import this description into DAGitty. In
addition, DAGitty contains some pre-defined examples
that you can use to become familiar with the program
and with DAGs in general. To do so, just select one of
the pre-defined examples from the “Examples” menu.

3.1 DAGitty’s textual syntax for causal dia-
grams

The textual syntax in DAGitty is based on the ‘dot’
language by graphviz. In fact, many dot graphs should
work directly in dagitty without modifications, although
most of the style attributes of the dot language are not
supported by dagitty. I believe it’s best to introduce the
syntax by a series of examples. Let’s start by defining
the example used in the introduction above.

dag{

smoking

"carry matches" [exposure]

cancer [outcome]

smoking -> "carry matches"

smoking -> cancer

"carry matches" -> cancer

}

This example shows the three basic components of
the syntax in action:

• The enclosing statement dag{ ... }, which is
always there. The DAG can also be given a name
like so: dag Smoking { ... }

• The variable (vertex) statements. These consist
of a variable name and a list of options enclosed
in square brackets. For instance, the options “ex-
posure” and “outcome” set a variable to be an
exposure or outcome, respectively. Other relevant
options are “latent” (for unobserved variables)
and “adjusted” (for variables that have been ad-
justed for in a statistical analysis). It is necessary
to double-quote the variable names if they con-
tain spaces or other special characters, like for the
variable “carry matches”.

• The edge statements. These consist of a source
variable, and edge type (which can be ->, <-, or
<->), and a target variable. As explained above,
bi-directed edges (x<->y) are simply an equivalent
shorthand for typing x<-u->y; u[latent].

These three syntax components are in fact enough
to define any DAG. We are now going to define the
same DAG in various different ways to showcase vari-
ous convenient features of the syntax that make DAG
definitions more compact; it is not necessary to use any
of these features, but they can save a lot of typing.

Variable statements can be omitted if the variable
has no options, such as “smoking” in the above example.
Every time a variable is used in an edge statement, that

4

variable is automatically added as if there had been a
corresponding node statement without an option.

dag{

"carry matches" [exposure]

cancer [outcome]

smoking -> "carry matches"

smoking -> cancer

"carry matches" -> cancer

}

White-space is optional and several statements can
be combined on one line. For clarity, it is recommended
to insert semi-colons between different statements on the
same line; however, this is not necessary. The following
two versions are equivalent:

dag{

"carry matches" [exposure]; cancer [outcome]

smoking -> "carry matches"; smoking -> cancer;

"carry matches" -> cancer

}

dag{

"carry matches" [exposure] cancer [outcome]

smoking -> "carry matches" smoking -> cancer

"carry matches" -> cancer

}

Edge statements can be chained together such that
entire paths can be defined at once:

dag{

"carry matches" [exposure] ; cancer [outcome]

smoking -> "carry matches" -> cancer

smoking -> cancer

}

Arrows can also be written in reverse orientation,
which is quite convenient when used together with edge
chaining:

dag{

"carry matches" [exposure] ; cancer [outcome]

cancer <- smoking -> "carry matches" -> cancer

}

Another very useful feature for short DAG descrip-
tions is variable grouping using curly braces. This allows
you to define several arrows at once like so:

dag{

"carry matches" [exposure] ; cancer [outcome]

smoking -> {"carry matches" cancer}

"carry matches" -> cancer

}

The curly braces open a new scope in which a “sub-
graph” is defined. An arrow pointing to a sub-graph
means that there will be arrows made to all variables in
the sub-graph, and the sub-graph itself can also define
its own internal arrows. This means that we can also
write the above as:

dag{

"carry matches" [exposure] ; cancer [outcome]

smoking -> {"carry matches" -> cancer}

}

To save even more typing, several option names can
be abbreviated using single letters like so:

dag{

"carry matches" [e] ; cancer [o]

smoking -> {"carry matches" -> cancer}

}

Like mentioned above, it is not necessary to use
grouping or edge statement chaining; the only purpose
of these tricks is to save some typing. In fact, once your
textual syntax is entered in DAGitty, it will be converted
back to a trivial form in which the variable and edge
statements are all explicitly listed. (This is similar to
what would happen in graphviz.)

The above examples covered only the structure of the
DAG, but gave no layout information. A simple layout
is automatically generated by DAGitty once you input a
text description where DAGitty cannot detect any layout
coordinates. The coordinates are also updated when
you move nodes around or bend edges. See Figure 1
for how the layout information is added to the variable
statements. You could of course enter your own layout
information manually into the text syntax as well.

3.2 Loading a model text

To load a textually defined diagram into DAGitty, simply
copy&paste the textual description into the “Model code”
text box. Then click on “Update DAG”. DAGitty will
now generate a preliminary graphical layout for your
diagram on the canvas, which may not yet look the way
you intended, but can be freely modified.

5

(a)

dag{

E -> D

A -> E

A -> Z

B -> Z

B -> D

Z -> E

Z -> D

}

(b)

dag{

A -> {Z E}

B -> {Z D}

Z -> {E D}

E -> D

}

(c)

dag{

A -> {Z -> E}

B -> {Z -> D}

E -> D

}

(d)

dag {

A [pos="0,-2"]

B [pos="2,-2"]

D [outcome,pos="2,0"]

E [exposure,pos="0,0"]

Z [pos="1,-1"]

A -> { E Z }

B -> { D Z }

E -> D

Z -> { D E }

}

(e)

A B

Z

E D

Figure 1: Example for a textual model definition with DAGitty
using (a) simple model code; (b) shorter model codel and (c)
very short model code of the graph in (a) using grouping oper-
ations. (d) When the diagram is edited within DAGitty, vertex
labels and adjustment status are augmented with additional
layout coordinates for each variable, which are indicated as
an option of the corresponding node. (e) Graphical layout
corresponding to (d).

3.3 Modifying the graphical layout of a dia-
gram

To layout the vertices and arrows of your diagram more
clearly than DAGitty did, simply drag the vertices with
your mouse on the canvas. You may notice that DAGitty
modifies the information in the “Model code” field on the
fly, and augments it with additional position information
for each vertex. In general, all changes you make to your
diagram within DAGitty are immediately reflected in
the model code.

3.4 Saving the diagram

To save your diagram locally, just copy&paste the con-
tents of the “Model code” field to a text file, and save
that file locally to your computer2. When you wish to
continue working on the diagram, copy the model code
back into DAGitty as explained above.

3.5 Exporting the diagram

DAGitty can export the diagram as a PDF or SVG vector
graphic (publication quality) or a JPEG or PNG bitmap
graphic (e.g. for inclusion in Powerpoint). Select the
corresponding function from the “Model” menu. If you
want to edit the graphical layout of the diagram or
annotate it, it is recommended to export the diagram as
an SVG file and open that in a vector graphics program
such as Inkscape.

3.6 Publishing diagrams online

Part of the appeal of using DAGs is that the assumptions
underlying one’s research are made explicit, and the
conclusions drawn from the data can be later re-checked
if some of the assumptions are found to not hold. Of
course, this requires to make the DAG available together
with the data and interpretation. I have however seen
many articles where people report having used DAGs
but do not actually show them. If researchers, reviewers
or editors deem it inappropriate to include the DAG (or
its model code) in the manuscript itself, here’s another
option: Store the DAG on the DAGitty website and get
a short URL under which this DAG will be accessible.
Then include this URL in the manuscript, or its sup-
porting information. For example, one of the DAGitty
examples is stored at the URL dagitty.net/mvcFQ.

2This is most easily done by clicking in the text field, pressing
“CTRL + A” to select the entire content of the text field, then pressing
“CTRL + C” to copy the content. You can then paste the content in
another program using “CTRL + V”.

6

https://dagitty.net/mvcFQ

Here’s how it works: Draw your DAG to full satisfac-
tion, then choose “Publish on dagitty.net” from the “Model”
menu. You have two options how to publish your DAG:
anonymously, or linking it to an e-mail address. If you
store the DAG anonymously, you will later on not be
able to edit it or delete it from the server.

After choosing “Publish on dagitty.net” from the “Model”
menu, a small form will appear where you can enter
some metadata on the DAG, and provide your e-mail
address if you so wish. Upon clicking “Publish”, the
DAG will be sent to the dagitty.net server, and you will
receive a URL under which the DAG is now available. If
you provided your e-mail address, you will also receive
a message requesting you to confirm your ownership
of the DAG. This is simply done by clicking on a confir-
mation link. Only then will the DAG be linked to your
e-mail address, and you will receive a password to use
when deleting or modifying the published DAG.

If you did link your DAG to your e-mail address, you
can delete it by choosing “Delete on dagitty.net” from the

“Model” menu, which will prompt you to enter the DAG’s
URL and the password. If the URL and password match,
the DAG will be deleted. Similarly, you can update a
stored DAG using the “Load from dagitty.net” function
from the “Model” menu, modifying it, and saving it
again. You can view published DAGs (if you know their
URL) by just putting the URL into your address bar
of course, but you can also do so using the “Load from
dagitty.net” function.

Please note that all DAGs stored on dagitty.net are
meant to be public information. Do not store any data
that you consider private or in any way secret. Once
stored on dagitty.net, every person in the world who
knows your DAG’s URL can view it (but not your e-mail
address if you provided one). Also note that there is
no guarantee that dagitty.net will keep running forever.
Storing your DAGs is done at your own risk. Still,
you may find this feature useful, for instance to e-mail
your DAGs to colleagues or to include links to DAGs in
papers under review. For archival purposes, it may be
more appropriate to include the DAG or the model code
in the paper itself or its supporting information.

4 Editing diagrams using the graph-

ical user interface

You are free to make changes directly to the textual
description of your diagram, which will be reflected
on the canvas next time you click on “Update DAG”.
However, you can also create, modify, and delete vertices

and arrows graphically using the mouse.

4.1 Creating a new diagram

To create a new diagram, select “New Model” from the
“Model” menu. You will be asked for the names of the
exposure and the outcome variable, and an initial model
containing just those variables and an arrow between
them will be drawn. Then you can add variables and
arrows to the model as explained below.

4.2 Adding new variables

To add a new variable to the model, double-click on a
free space in the canvas (i.e., not on an existing variable)
or press the “n” key. A dialog will pop up asking you
for the name of the new variable. Enter the name into
the dialog and press the enter key or click “OK”. If you
click “Cancel”, no new variable will be created.

4.3 Renaming variables

To rename an existing variable, move the mouse pointer
over that variable and hit the “r” key. A dialog will pop
up allowing you to change the variable name.

4.4 Setting the status of a variable

Variables can have one of the following statuses:

• Exposure

• Outcome

• Adjusted

• Selected

• Unobserved (latent)

• Other

You can change these statuses when you click on
the variable using the checkboxes in the “Variable” field.
There are also keyboard shortcuts available. For exam-
ple, to turn a variable into an exposure, move the mouse
pointer over that variable and hit the “e” key; for an
outcome, hit the “o” key instead. To toggle whether a
variable is observed or unobserved, hit the “u” key; to
toggle whether it is adjusted, hit the “a” key. Chang-
ing the status of variables may change the colors of
the diagram vertices to reflect the new structure and
information flow in the diagram (see below).

At present, the statuses are mutually exclusive – e.g.,
a variable cannot be both unobserved and adjusted or

7

both exposure and unobserved. This could change in
future versions of DAGitty.

4.5 Adding new arrows

To add a new arrow, double-click first on the source
vertex (which will become highlighted) and then on
the target vertex. The arrow will be inserted. If an
arrow existed before in the opposite direction, then a
bi-directed arrow will be created. If a bi-directed arrow
already existed, then it will be deleted. This means it
is currently not possible to have both a directed and a
bi-directed arrow between the same variables. If you
want to represent such structures, please represent the
bi-directed arrow x⇔ y explicitly as x← u→ y, where
u is a latent variable. (Remember that x⇔ y is simply a
shorthand for x← u→ y.)

Instead of double-clicking on a vertex, you can also
move the mouse pointer over the vertex and press the key
“c”. Arrows are by default drawn using a straight line,
but you can change that moving the mouse pointer to the
line, pressing and holding down the left mouse button,
and “bending” the line by dragging as appropriate.

4.6 Deleting variables

To delete a variable, move the mouse pointer over that
variable and hit the “del” key on your keyboard, or
alternatively the “d” key (the latter comes in handy if
you’re on a Mac, which has no real delete key). All
arrows to that variable will be deleted along with the
variable. In contrast to DAGitty versions prior to 2.0, all
variables can now be deleted including exposure and
outcome.

4.7 Deleting arrows

An arrow is deleted just like it has been inserted, i.e., by
double-clicking first on the start variable and then on the
target variable. An arrow is also deleted automatically
if a new one is inserted in the opposite direction (see
above).

4.8 Choosing the style of display

At present, you can choose between two DAG diagram
styles: “classic”, where nodes and their labels are sep-
arate from each other, and SEM-like, where labels are
inside nodes. Both have their advantages and disadvan-
tages. By the way, “SEM” refers to structural equation
modeling.

5 Analyzing diagrams

5.1 Paths

Causal diagrams contain two different kinds of paths
between exposure and outcome variables.

• Causal paths start at the exposure, contain only
arrows pointing away from the exposure, and
end at the outcome. That is, they have the form
e→ x1 → . . .→ xk → o.

• Biasing paths are all other paths from exposure to
outcome. For example, such paths can have the
form e← x1 → . . .→ xk → o.

With respect to a set Z of conditioning variables
(that can also be empty if we are not conditioning on
anything), paths can be either open or closed (also called
d-separated [8]). A path is closed by Z if one or both of
the following holds:

• The path p contains a chain x→ m→ y or a fork
x← m→ y such that m is in Z.

• The path p contains a collider x→ c← y such that
c is not in Z and furthermore, Z does not contain
any successor of c in the graph.

Otherwise, the path is open. The above criteria imply
that paths consisting of only one arrow are always open,
no matter the content of Z. Also it is possible that a path
is closed with respect to the empty set Z = {}.

5.2 Coloring

It is not easy to verify by hand which paths are open and
which paths are closed, especially in larger diagrams.
DAGitty highlights all arrows lying on open biasing
paths in red and all arrows lying on open causal paths in
green. This highlighting is optional and is controlled via
the “highlight causal paths” and “highlight biasing paths”
checkboxes.

5.3 Effect analysis

As mentioned above, arrows in DAGs represent direct
effects. That is, in a DAG with three variables X, M,
and Y, an arrow X → Y means that there is a causal
effect of X on Y that is not mediated through the variable
M. Often when building DAGs, people tend to forget
this aspect and think only about whether any kind of
causal effect exists, without paying attention to how it
is mediated. This may result in DAGs with too many
arrows.

8

To aid users with this, George Ellison (Leeds Univer-
sity) suggested to implement a function that identifies
arrows for which also a corresponding indirect pathway
exists. After drawing an initial DAG, one might recon-
sider these arrows and judge whether they are really
necessary given the indirect pathways already present
in the diagram.

For example, suppose after thinking about the pair-
wise causal relationships between our variables X, M, Y
we came up with this DAG:

X M Y

For the arrows drawn in bold, there is no corre-
sponding indirect path – removing one of these arrows
from the diagram means that there will no longer be
any causal effect between the corresponding variables.
These arrows are called atomic direct effects in DAGitty,
and they can be highlighted – like in the above DAG –
by ticking the checkbox with that name. On the other
hand, for the thin arrow X→ Y, there is also the indirect
pathway X → M → Y. One may therefore reconsider
whether the arrow X→ Y is truly necessary – perhaps
the causal effect from X to Y is entirely mediated through
M.

5.4 View mode

There are several ways to transform a given DAG such
that it becomes better suited for a particular purpose.
We call such a transformed DAG a derived graph. Cur-
rently DAGitty can display two kinds of derived graphs:
correlation graphs, and moral graphs. These derived
graphs can be shown by clicking on the respective radio
button in the “View mode” field on the left-hand side of
the screen.

5.4.1 The correlation graph

The correlation graph is not a DAG, but a simple graph
with lines instead of arrows. It connects each pair of
variables that, according to the diagram, could be statisti-
cally dependent. In other words, variables not connected
by a line in the correlation graph must be statistically
independent. These pairwise independencies are also
listed in the “Testable implications” field on the right-hand
side of the screen, and so the correlation graph could be
seen as encoding a subset of those implications.

Although this is not implemented in DAGitty yet, it
is also possible to take a given correlation graph (which
can be obtained e.g. by thresholding a covariance matrix)
and list all the DAGs that are “compatible” with it in

the sense that they entail exactly the given correlation
graph [17].

5.4.2 The moral graph

To identify minimal sufficient adjustment sets, DAGitty
uses the so-called “moral graph”, which results from a
transformation of the model to an undirected graph. This
procedure is also highly recommended if you wish to
verify the calculation by hand. See the nice explanation
by Shrier and Platt [14] for details on this procedure.

In DAGitty, you can switch between display of the
model and its moral graph choosing “moral graph” in
the“view mode” section on the left-hand side of the
page.

5.5 Causal effect identification

Some of the most important features of DAGitty are
concerned with the question: how can causal effects be
estimated from observational data? Currently, two types
of causal effect identification are supported: adjustment
sets, and instrumental variables.

5.5.1 Adjustment sets

Finding sufficient adjustment sets is one main purpose
of DAGitty. In a nutshell, a sufficient adjustment set Z is
a set of covariates such that adjustment, stratification, or
selection (e.g. by restriction or matching) will minimize
bias when estimating the causal effect of the exposure
on the outcome (assuming that the causal assumptions
encoded in the diagram hold). You can read more about
controlling bias and confounding in Pearl’s textbook,
chapter 3.3 and epilogue [8]. Moreover, Shrier and Platt
[14] give a nice step-by-step tutorial on how to test if a
set of covariates is a sufficient adjustment set.

To identify adjustment sets, the diagram must contain
at least one exposure and at least one outcome.

Total and direct effects. One can understand adjust-
ment sets graphically by viewing an adjustment set as a
set Z that closes all all biasing paths while keeping de-
sired causal paths open (see previous section). DAGitty
considers two kinds of adjustment sets:

• Adjustment sets for the total effect are sets that close
all biasing paths and leave all causal paths open.
In the literature, if the effect is not mentioned (e.g.
[14, 6]), then usually this kind of adjustment set is
meant.

9

C1

C2

Y

M

X

Figure 2: A causal diagram where the total and direct effects
of exposure X on outcome Y are not equal. The total effect is
the effect mediated only via the thick (both dashed and solid)
arrows, while the direct effect is the effect mediated only via
the thick arrow.

• Adjustment sets for the direct effect are sets that
close all biasing paths and all causal paths, and
leave only the direct arrow from exposure X to
outcome Y (i.e., the path X→ Y, if it exists) open.

In a diagram where the only causal path between
exposure and outcome is the path X→ Y, the total effect
and the direct effect are equal. This is true e.g. for the
diagram in Figure 1. An example diagram where the
direct and total effects are not equal is shown in Figure 2.

As proved by Lauritzen et al. [7] (see also Tian et
al. [20]), it suffices to restrict our attention to the part of
the model that consists of exposure, outcome, and their
ancestors for identifying sufficient adjustment sets. This
is indicated by DAGitty by coloring irrelevant nodes in
gray. The relevant variables are colored according to
which node they are ancestors of (exposure, outcome, or
both) – see the legend on the left-hand side of the screen.
The highlighting may be turned on and off by toggling
the “highlight ancestors” checkbox.

Minimal sufficient adjustment sets. A minimal suf-
ficient adjustment set is a sufficient adjustment set of
which no proper subset is itself sufficient. For example,
consider again the causal diagram in Figure ??. The
following three sets are sufficient adjustment sets for the
total and direct effects, which are equal in this case:

{A,B,Z}

{A,Z}

{B,Z}

Each of these sets is sufficient because it closes all
biasing paths and leaves the causal path open. The sets
{A,Z} and {B,Z} are minimal sufficient adjustment sets
while the set {A,B,Z} is sufficient, but not minimal. In
contrast, the set {Z} is not sufficient, since this would open

the path E ← A → Z ← B ← D: Because both E and
D depend on Z, adjusting for Z will induce additional
correlation between E and D.

Finding minimal sufficient adjustment sets. To find
minimal sufficient adjustment sets, select the option
“Adjustment (total effect)” or “Adjustment (direct effect)”
in the “Causal effect identification” field. DAGitty will
then calculate all minimal sufficient adjustment sets
and display them in that field. Any changes made
to the diagram will be instantly reflected in the list of
adjustment sets.

Forcing adjustment for specific covariates. You can
also tell DAGitty that you wish a specific covariate to be
included into every adjustment set. To do this, move the
mouse over the vertex of that covariate and press the a
key. DAGitty will then update the list of minimal suffi-
cient adjustment sets accordingly – every set displayed
is now minimal in the sense that removing any variable
except those you specified will render that set insufficient.
However, when you adjust for an intermediate or an-
other descendant of the exposure, DAGitty will tell you
that it is no longer possible to find a valid adjustment
set.

Avoiding adjustment for unobserved covariates. You
can tell DAGitty that a certain variable is unobserved
(e.g. not measured at present, or not measurable because
it is a latent variable) by moving the mouse over that
covariate and pressing the u key. DAGitty will only
calculate adjustment sets that do not contain unobserved
variables. However, if too many or some important
variables are unobserved, then it may be impossible to
close all biasing paths.

5.5.2 Instrumental variables

Sometimes it is not possible to estimate a causal effect
by simple covariate adjustment. For example, this is
the case whenever there is an unobserved confounder
that directly effects the exposure and outcome variables.
However, this does not necessarily mean that it is im-
possible to estimate the causal effect at all. Instrumental
variable regression is a technique that is often used in
situations wit unobserved confounders. Note that this
technique depends on linearity assumptions. For fur-
ther information on instrumental variables, please refer
to the literature [2, 5]. DAGitty can find instrumental
variables in DAGs, as explained below.

10

The validity of an instrumental variable I depends
on two causal conditions – exogeneity and exclusion
restriction. These two conditions can be expressed in
the language of DAGs and paths as follows: (1) there
must be an open path between I and the exposure X;
and (2) all paths between I and the outcome Y must be
closed in a modified graph where all edges out of X are
removed. A variable that fulfills these two conditions is
called an instrumental variable or simply an instrument.

Instrumental variables can also be generalized such
that the two conditions are required to hold conditional
on a set of covariates Z [3]. The two conditions then read
as follows: (1) there must be a path between I and X
that is opened by Z; and (2) all paths between I and Y
must be closed by Z in a modified graph where all edges
out of X are removed. A variable that fulfills these two
conditions is called a conditional instrument.

DAGitty will find both “classic” and conditional
instruments when the option “Instrumental Variable” is
selected under the “Causal effect identification” field. Note
that DAGitty will not always list all possible instruments;
instead, it will restrict itself to a certain well-defined
subset that we call “ancestral instruments”. However,
whenever any instrument or conditional instrument
exists at all, then DAGitty is guaranteed to find one.
Note also that if there are several instruments available,
then it is best to choose the one that is most strongly
correlated with X (conditional on Z in the case of a
conditional instrument).

For details regarding ancestral instruments and how
DAGitty computes them, please refer to the research
paper where we describe these methods [22].

5.6 Testable implications

Any implications that are obtained from a causal dia-
gram, such as possible adjustment sets or instrumental
variables, are of course dependent on the assumptions
encoded in the diagram. To some extent, these assump-
tions can be tested via the (conditional) independences
implied by the diagram: If two variables X and Y are
d-separated by a set Z, then X and Y should be condi-
tionally independent given Z. The converse is not true:
Two variables X and Y can be independent given a set
Z even though they are not d-separated in the diagram.
Furthermore, two variables can also be d-separated by
the empty set Z = ∅. In that case, the diagram implies
that X and Y are unconditionally independent.

DAGitty displays all minimal testable implications
in the “Testable implications” text field. Only such impli-
cations will be displayed that are in fact testable, i.e.,

that do not involve any unobserved variables. Note that
the set of testable implications displayed by DAGitty
does not constitute a “basis set” [8]. Future versions will
allow choosing between different basis sets.

In general, the less arrows a diagram contains, the
more testable predictions it implies. For this reason,
“simpler” models with fewer arrows are in general easier
to falsify (Occam’s razor).

6 Acknowledgements

I would like to thank my collaborators Maciej Liśkiewicz
and Benito van der Zander (both at the Institute for
Theoretical Computer Science, University of Lübeck,
Germany) for our collaborations on developing efficient
algorithms to analyze causal diagrams.

I also thank Michael Elberfeld, Juliane Hardt, Sven
Knüppel, Keith Marcus, Judea Pearl, Sabine Schipf, and
Felix Thoemmes (in alphabetical order) for enlighten-
ing discussions (either in person, per e-mail, or on the
SEMnet discussion list) about DAGs that made this pro-
gram possible. Furthermore, I thank Robert Balshaw,
George Ellison, Marlene Egger, Angelo Franchini, Ulrike
Förster, Mark Gilthorpe, Dirk van Kampen, JeffMartin,
Jillian Martin, Karl Michaëlsson, David Tritchler, Eric
Vittinghof, and other users for sending feedback and
bug reports that greatly helped to improve DAGitty.

The development of DAGitty was sponsored by
funding from the Institute of Genetics, Health and Ther-
apeutics at Leeds University, UK. I thank George Ellison
for arranging this generous support.

7 Legal notice

Use of DAGitty is (and will always be) freely permitted
and free of charge. You can download DAGitty’s source
code from github.com/jtextor/dagitty. The source
code is available under the GNU General Public License
(GPL), either version 2.0, or any later version, at the
licensee’s choice; see the file LICENSE.txt in the down-
load archive for details. In particular, the GPL permits
you to modify and redistribute the source as you please
as long as the result remains itself under the GPL.

8 Bundled libraries

DAGitty ships along with the JavaScript library Pro-
totype.js, a framework that makes life with JavaScript
much easier. Only some parts of Prototype (mainly
those focusing on data structures) are included to keep

11

github.com/jtextor/dagitty

the code small. Developed by the Prototype Core Team
and licensed under the MIT license [16].

Furthermore, DAGitty contains some modified code
from the Dracula Graph Library by Philipp Strathausen,
which is also licensed under the MIT license [15].

I am grateful to the authors of these libraries for their
valuable work.

9 Bundled examples

DAGitty contains some builtin examples for didactic
and illustrative purposes. Some of these examples are
taken from published papers or talks given at scientific
meetings. These are, in inverse chronological order:

• van Kampen 2014 [23]

• Polzer et al., 2012 [10]

• Schipf et al., 2010 [12]

• Didelez et al., 2010 [4]

• Shrier & Pratt, 2008 [14]

• Sebastiani et al.3, 2005 [13]

• Acid & de Campos, 1996 [1]

Another example was provided by Felix Thoemmes
via personal communication (2013).

10 Author contact

I would be glad to receive feedback from those who use
DAGitty for research or educational purposes. Also, you
are welcome to send me your suggestions or requests
for features that you miss in DAGitty.

Johannes Textor
Data Science group
Radboud University
Nijmegen, The Netherlands

johannes.textor@gmx.de

johannes-textor.name

Mastodon: @johannes textor

3The example actually shows only a small part of their DAG.

References

[1] Silvia Acid and Luis M. De Campos. An algorithm
for finding minimum d-separating sets in belief
networks. In Proceedings of the 12th Conference of
Uncertainty in Artificial Intelligence, pages 3–10, 1996.

[2] Joshua D. Angrist, Guido W. Imbens, and Donald B.
Rubin. Identification of causal effects using instru-
mental variables. Journal of the American Statistical
Association, 91(434):444–55, 1996.

[3] Carlos Brito and Judea Pearl. Generalized instru-
mental variables. In Proceedings of the 18th Conference
on Uncertainty in Artificial Intelligence, pages 85–93,
2002.

[4] Vanessa Didelez, Svend Kreiner, and Niels Keiding.
Graphical models for inference under outcome-
dependent sampling. Statistical Science, 25(3), Au-
gust 2010.

[5] Guido Imbens. Instrumental variables: An econo-
metrician’s perspective. Statistical Science, 29(3):323–
58, 2014.

[6] Sven Knüppel and Andreas Stang. DAG program:
identifying minimal sufficient adjustment sets. Epi-
demiology, 21(1):159, 2010.

[7] Steffen L. Laurizen, A. Philip Dawid, Birgitte N.
Larsen, and Hanns-Georg Leimer. Independence
properties of directed markov fields. Networks,
20(5):491–505, 1990.

[8] Judea Pearl. Causality: Models, Reasoning and Infer-
ence. Cambridge University Press, New York, NY,
USA, 2nd edition, 2009.

[9] Judea Pearl, Madelyn Glymour, and Nicholas P
Jewell. Causality Inference in Statistics: A Primer.
Wiley, New York, NY, USA, 1st edition, 2016.

[10] Ines Polzer, Christian Schwahn, Henry Völzke,
Torsten Mundt, and Reiner Biffar. The associa-
tion of tooth loss with all-cause and circulatory
mortality. Is there a benefit of replaced teeth? A
systematic review and meta-analysis. Clinical Oral
Investigations, 16(2):333–351, 2012.

[11] Kenneth J. Rothman, Sander Greenland, and Timo-
thy L. Lash. Modern Epidemiology. Wolters Kluwer,
2008.

12

mailto:johannes.textor@gmx.de
https://johannes-textor.name
https://mastodon.social/@johannes_textor

[12] Sabine Schipf, Robin Haring, Nele Friedrich,
Matthias Nauck, Katharina Lau, Dietrich Alte, An-
dreas Stang, Henry Völzke, and Henri Wallaschof-
ski. Low total testosterone is associated with in-
creased risk of incident type 2 diabetes mellitus in
men: Results from the study of health in pomerania
(SHIP). The Aging Male, 14(3):168–75, 2011.

[13] Paola Sebastiani, Marco F. Ramoni, Vikki Nolan,
Clinton T. Baldwin, and Martin H. Steinberg. Ge-
netic dissection and prognostic modeling of overt
stroke in sickle cell anemia. Nature Genetics, 37:435–
40, 2005.

[14] Ian Shrier and Robert W. Platt. Reducing bias
through directed acyclic graphs. BMC Medical Re-
search Methodology, 8(70), 2008.

[15] Philipp Strathausen. Dracula graph layout and
drawing framework. http://www.graphdracula.
net, 2010.

[16] Prototype Core Team. Prototype–javascript library.
http://www.prototypejs.org, 2010.

[17] Johannes Textor, Alexander Idelberger, and Maciej
Liśkiewicz. Learning from pairwise marginal in-
dependencies. In Proceedings of the 31st Conference
on Uncertainty in Artificial Intelligence, pages 882–91.
AUAI Press, 2015.

[18] Johannes Textor and Maciej Liśkiewicz. Adjust-
ment criteria in casual diagrams: an algorithmic
perspective. In Proceedings of the 27th Conference on
Uncertainty in Artificial Intelligence, pages 681–88.
AUAI Press, 2011.

[19] Johannes Textor, Benito van der Zander, Mark S.
Gilthorpe, Maciej Liśkiewicz, and George TH Elli-
son. Robust causal inference using directed acyclic
graphs: the R package ‘dagitty’. International Journal
of Epidemiology, 45(6):1887–1894, December 2016.

[20] Jin Tian, Azaria Paz, and Judea Pearl. Finding min-
imal d-separators. Technical Report R-254, UCLA,
1998.

[21] Benito van der Zander, Maciej Liśkiewicz, and
Johannes Textor. Constructing separators and ad-
justment sets in ancestral graphs. In Proceedings
of the 30th Conference on Uncertainty in Artificial
Intelligence, pages 907–16. AUAI Press, 2014.

[22] Benito van der Zander, Johannes Textor, and Maciej
Liśkiewicz. Efficiently finding conditional instru-
ments for causal inference. In Proceedings of the 24th

International Joint Conference on Artificial Intelligence
(IJCAI 2015), pages 3243–49. AAAI Press, 2015.

[23] Dirk van Kampen. The ssq model of schizophrenic
prodromal unfolding revised: An analysis of its
causal chains based on the language of directed
graphs. European Psychiatry, 29(7):437–48, 2014.

13

http://www.graphdracula.net
http://www.graphdracula.net
http://www.prototypejs.org

	Introduction
	Citing DAGitty
	Running DAGitty online
	Installing DAGitty on your own computer
	Migrating from earlier versions of DAGitty

	A brief introduction to causal diagrams
	Loading, saving and sharing diagrams
	DAGitty's textual syntax for causal diagrams
	Loading a model text
	Modifying the graphical layout of a diagram
	Saving the diagram
	Exporting the diagram
	Publishing diagrams online

	Editing diagrams using the graphical user interface
	Creating a new diagram
	Adding new variables
	Renaming variables
	Setting the status of a variable
	Adding new arrows
	Deleting variables
	Deleting arrows
	Choosing the style of display

	Analyzing diagrams
	Paths
	Coloring
	Effect analysis
	View mode
	The correlation graph
	The moral graph

	Causal effect identification
	Adjustment sets
	Instrumental variables

	Testable implications

	Acknowledgements
	Legal notice
	Bundled libraries
	Bundled examples
	Author contact

